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Function-as-a-Service (FaaS)
Serverless Computing

Auto-scaling 
&

transparent
operation

Applications
composed of

functions
Amazon Lambda Azure Functions

Google Cloud
Functions

IBM Cloud
Functions



FaaS is like a flying rhino! 

• Neither a bird (native function)
• Too much overhead compared to 

native function execution

• Nor a rhino (VM)
• Being small and short-lived makes 

them hard to provision
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Source: https://www.flickr.com/photos/1grandpoobah/7902346828/in/photostream/

https://www.flickr.com/photos/1grandpoobah/7902346828/in/photostream/


FaaS Differs From Prior Cloud Offerings
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Just a few:
• Short function executions
• High concurrency (with inefficient isolation)
• Fine-grained pricing based on execution time, memory, and 

request counts
• Developer has less control on provisioning



Prior Work

5

External characterization and reverse-engineering

Building new applications / mapping existing applications

Better isolation/virtualization mechanisms 
(safe containers, light virtual machines)



Our Initial Goal: New Architectural 
Features to Better Support FaaS
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No Benchmark

No Clear Testing 
& Profiling Methodology

Too Complex of a System

Let’s gather some!

Let’s build one!

Let’s try to understand it first!



Diving deep into an open source 
serverless platform. 

• A complete open-sourced industry-grade (IBM) FaaS
platform

• Functions run in containers
• Functions can be in Python, Node.js, Scala, Java, Go, 

Ruby, Swift, PHP, .Net, and Rust
• Or the developer can provide a Docker container
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We built FaaSProfiler for testing and profiling.

Synthetic Workload 
Invoker

Workload Analyzer

Comparative 
Analyzer

FaaS Platform

OpenWhisk

CouchDB

Post

Rich AnalyticsQuick 
Insights

Data 
Archives

{;}

JSON

Post

Get

NGINX

Controller

Kafka

Invoker

FaaSProfiler

Config
File • Automated function invocations 

(single JSON file):
• Synthetic distributions

• Specified traces

• Uses standard profiling tools:
Perf, PQoS, Blktrace, etc.

• Easy analysis and comparison 

https://github.com/PrincetonUniversity/faas-profiler

https://github.com/PrincetonUniversity/faas-profiler


Benchmarks and Test Setup

Benchmarks:
• 5 representative applications
• 28 Python microbenchmarks

Test server:
• Intel Xeon E5-2620 v4
• 8-cores, 16-threads
• 20MB Last-Level Cache
• 16GB 2133MHz DDR4 (single-channel)
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FaaS
Benchmark Runtime

autocomplete NodeJS

markdown-to-
HTML Python

img-resize NodeJS

sentiment-
analysis Python

ocr-img NodeJS + binary



Understanding The Performance Criteria 



How about for FaaS functions?

For native functions, execution time is an accepted measure of performance.
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Execution Time Latency Throughput

End UserDeveloper Provider



Server Capacity & Latency Modes

■ Over-invoked

■ Capacity

■ Balanced

■ Under-invoked
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Input > Capacity

Input = Capacity

Input < Capacity

Input << Capacity
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Breakdown of Latency

1. Initialization Time

2. Wait Time in the Queue

3. Execution Time

Non-trivial overhead
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Interesting Architectural Findings

2. Branch Prediction

1. Last-level Cache (LLC) Requirement

3. Memory Bandwidth Consumption



Last-Level Cache (LLC)
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Shared L3 (LLC)

L2

iL1 dL1

Core N

Memory
~50-
70ns

~2-5ns

https://www.anandtech.com/show/2960/2

http://www.guru3d.com/articles-pages/core-
i7-5960x-5930k-and-5820k-processor-
review,2.html

Critical for 
Performance 

Vary Expensive 
(SRAM on CPU)

L2

iL1 dL1

Core 1



We observed low LLC requirements.
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Used Intel Cache Allocation Technology (CAT).

Low 
Demand 

from 
Functions

Low Demand 
from 

Platform 
Components



Others have also reported decreasing LLC requirement 
for emerging cloud workloads.

17

• Scale out workloads [Ferdman et al., ASPLOS ‘12]
• Latency-critical cloud workloads [Chen et al., ASPLOS ‘19]
• Microservices [Gen et al., ASPLOS ‘19]

Long-term Opportunity

Princeton Piton Processor UC Davis KiloCore

More cores, less LLC
Short-term Opportunity
Partition the LLC in favor of 
cache-sensitive workloads.



Branch Prediction Performance

18MPKI: Misses per Kilo Instructions

MPKI does not vary 
with invocation rate if 
containers kept alive.

Functions have a 
distinct behavior.

convergence



Longer execution helps with branch misses.
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Shorter functions have higher MPKI.
[~20x variations]

Simulations revealed the reason.



Short FaaS Function Lifetimes vs.
Conventional Microarchitectural Expectation
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• Conventional expectation: programs run for long enough to train the predictors.

• Short deeply-virtualized functions are not a good fit to this model.

Revised branch predictors for:

• Retaining prediction states at the container- or application-level

• Faster training

Opportunity



Memory Bandwidth Consumption
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Various demands make it hard to co-locate.

• Heavy payload
• Short execution time

• Medium payload
• Long execution time

• Light payload
• Very short execution time



Per-Invocation Memory Bandwidth Usage
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Markdown Application

4x

• Pausing/unpausing containers 
increases the bandwidth usage

• Bandwidth usage noticeably 
higher compared to native 
executions



The server behavior should be carefully taken 
into account when designing new services.
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Native
Execution

Container

Cold Start

Branch MPKI

Queueing

Scheduling

Network

Memory BW

Interference

Up to 20x
slowdown

>10x exec time
for short functions
(500ms cold start)

20x MPKI for
short functions

6x variation due to
invocation pattern 

35% decrease in IPC
due to interference
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