
Architectural Implications of FaaS Computing

Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff

Wednesday, October 30, 2019

@MShahrad

https://mshahrad.github.io/



2

Function-as-a-Service (FaaS)
Serverless Computing

Auto-scaling 
&

transparent
operation

Applications
composed of

functions
Amazon Lambda Azure Functions

Google Cloud
Functions

IBM Cloud
Functions



FaaS is like a flying rhino! 

• Neither a bird (native function)
• Too much overhead compared to 

native function execution

• Nor a rhino (VM)
• Being small and short-lived makes 

them hard to provision

3
Source: https://www.flickr.com/photos/1grandpoobah/7902346828/in/photostream/

https://www.flickr.com/photos/1grandpoobah/7902346828/in/photostream/


FaaS Differs From Prior Cloud Offerings

4

Just a few:
• Short function executions
• High concurrency (with inefficient isolation)
• Fine-grained pricing based on execution time, memory, and 

request counts
• Developer has less control on provisioning



Prior Work

5

External characterization and reverse-engineering

Building new applications / mapping existing applications

Better isolation/virtualization mechanisms 
(safe containers, light virtual machines)



Our Initial Goal: New Architectural 
Features to Better Support FaaS

6

No Benchmark

No Clear Testing 
& Profiling Methodology

Too Complex of a System

Let’s gather some!

Let’s build one!

Let’s try to understand it first!



Diving deep into an open source 
serverless platform. 

• A complete open-sourced industry-grade (IBM) FaaS
platform

• Functions run in containers
• Functions can be in Python, Node.js, Scala, Java, Go, 

Ruby, Swift, PHP, .Net, and Rust
• Or the developer can provide a Docker container

7



8

We built FaaSProfiler for testing and profiling.

Synthetic Workload 
Invoker

Workload Analyzer

Comparative 
Analyzer

FaaS Platform

OpenWhisk

CouchDB

Post

Rich AnalyticsQuick 
Insights

Data 
Archives

{;}

JSON

Post

Get

NGINX

Controller

Kafka

Invoker

FaaSProfiler

Config
File • Automated function invocations 

(single JSON file):
• Synthetic distributions

• Specified traces

• Uses standard profiling tools:
Perf, PQoS, Blktrace, etc.

• Easy analysis and comparison 

https://github.com/PrincetonUniversity/faas-profiler

https://github.com/PrincetonUniversity/faas-profiler


Benchmarks and Test Setup

Benchmarks:
• 5 representative applications
• 28 Python microbenchmarks

Test server:
• Intel Xeon E5-2620 v4
• 8-cores, 16-threads
• 20MB Last-Level Cache
• 16GB 2133MHz DDR4 (single-channel)

9

FaaS
Benchmark Runtime

autocomplete NodeJS

markdown-to-
HTML Python

img-resize NodeJS

sentiment-
analysis Python

ocr-img NodeJS + binary



Understanding The Performance Criteria 



How about for FaaS functions?

For native functions, execution time is an accepted measure of performance.

11

Execution Time Latency Throughput

End UserDeveloper Provider



Server Capacity & Latency Modes

■ Over-invoked

■ Capacity

■ Balanced

■ Under-invoked

12

Input > Capacity

Input = Capacity

Input < Capacity

Input << Capacity



13

Breakdown of Latency

1. Initialization Time

2. Wait Time in the Queue

3. Execution Time

Non-trivial overhead



14

Interesting Architectural Findings

2. Branch Prediction

1. Last-level Cache (LLC) Requirement

3. Memory Bandwidth Consumption



Last-Level Cache (LLC)

15

Shared L3 (LLC)

L2

iL1 dL1

Core N

Memory
~50-
70ns

~2-5ns

https://www.anandtech.com/show/2960/2

http://www.guru3d.com/articles-pages/core-
i7-5960x-5930k-and-5820k-processor-
review,2.html

Critical for 
Performance 

Vary Expensive 
(SRAM on CPU)

L2

iL1 dL1

Core 1



We observed low LLC requirements.

16

Used Intel Cache Allocation Technology (CAT).

Low 
Demand 

from 
Functions

Low Demand 
from 

Platform 
Components



Others have also reported decreasing LLC requirement 
for emerging cloud workloads.

17

• Scale out workloads [Ferdman et al., ASPLOS ‘12]
• Latency-critical cloud workloads [Chen et al., ASPLOS ‘19]
• Microservices [Gen et al., ASPLOS ‘19]

Long-term Opportunity

Princeton Piton Processor UC Davis KiloCore

More cores, less LLC
Short-term Opportunity
Partition the LLC in favor of 
cache-sensitive workloads.



Branch Prediction Performance

18MPKI: Misses per Kilo Instructions

MPKI does not vary 
with invocation rate if 
containers kept alive.

Functions have a 
distinct behavior.

convergence



Longer execution helps with branch misses.

19

Shorter functions have higher MPKI.
[~20x variations]

Simulations revealed the reason.



Short FaaS Function Lifetimes vs.
Conventional Microarchitectural Expectation

20

• Conventional expectation: programs run for long enough to train the predictors.

• Short deeply-virtualized functions are not a good fit to this model.

Revised branch predictors for:

• Retaining prediction states at the container- or application-level

• Faster training

Opportunity



Memory Bandwidth Consumption

21

Various demands make it hard to co-locate.

• Heavy payload
• Short execution time

• Medium payload
• Long execution time

• Light payload
• Very short execution time



Per-Invocation Memory Bandwidth Usage

22

Markdown Application

4x

• Pausing/unpausing containers 
increases the bandwidth usage

• Bandwidth usage noticeably 
higher compared to native 
executions



The server behavior should be carefully taken 
into account when designing new services.

23

Native
Execution

Container

Cold Start

Branch MPKI

Queueing

Scheduling

Network

Memory BW

Interference

Up to 20x
slowdown

>10x exec time
for short functions
(500ms cold start)

20x MPKI for
short functions

6x variation due to
invocation pattern 

35% decrease in IPC
due to interference

Se
rv

er
(th

is 
pa

pe
r)

Pl
at

fo
rm

M
an

ag
em

en
t

(p
rio

r w
or

k)



FaaSProfilerPaper PDF


